The values of the relative boundary-layer thickness, displacement thickness, momentum
thickness, and local tangential stress on the plate in relation to o are given in Table 2,

It should be noted that the obtained solutions include, as a special case of the con-
sidered problem, the solution for the boundary layer of a Newtonian fluid. For this we must
put s = 0,

NOTATION

X, ¥, 2, Cartesian coordinates; u, v, velocity vector components; w, microrotation
vector component; v, Vv;, vz, coefficients of shear, rotational, and couple viscosity; u =
v/p, dynamic coefficient of shear viscosity; p, density; wo, microtation on plate; U,
velocity of incident flow; s = vi/v, m = jvz/v, dimensionless rheological parameters of
fluid model; j, microinertia; A, B, a, constants; ¥, stream function; n, self-similar vari-
able; f, ¢, dimensionless stream and microrotation functions; tyy,, tyx, stress temnsor com-
ponents; mMyy, Myy, couple stress tensor components; To, local tangential stress on plate;
§, relative boundary-layer thickness; 6*, displacement thickness; &6**, momentum thickness.
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HEAT TRANSFER IN A STRETCHED BICOMPONENT FILM

N. V. Tyabin, V. M. Shapovalov, and V. P. Remnev UDC 677.43541.12,036

The temperature distribution in a bicomponent film during nonisothermal stretch-
ing is discussed without allowance for dissipative heating,

Bicomponent films (laminates) are increasingly used, because such films are of particu-
larly good performance, e.g., in the production of crimped materials, where the crimping
arises from differences in elasticity of the components. A polymer characteristically has
very marked temperature dependence of the elastic parameters, so the working temperature is
a major parameter in production of crimped bicomponent material. Appropriate thermal con-
ditions can be provided in pulling such films in order to control the crimping [1, 2].

Here we consider the temperature pattern in such a film during nonisothermal stretching.
Figure 1 shows the drawing scheme,

We use an immobile Euler coordinate system with the x axis coincident with the direction
of motion of the film, while the y axis is perpendicular to that direction, and the origin
and the x axis are equidistant from the outer surfaces of the film.

We assume a linear distribution for the axial velocity of the film in the drawing zone
[3-5]:

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 36, No. 1, pp. 127-132, January,
1979. Original article submitted November 22, 1977.
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v, =9y, + I'x, (1)

o

where I' = (v¢ — vo)/L is the mean velocity gradient.

We use the integral equation of continuity to get the following equations for the sur-
faces of the components:

— 64v, B, = 840
2w, —~Tx) ' ° 2@, +Tx)
B, = 8y (g — 0.5) vy '

v —I'x

ﬁt=

where q = §,/8¢ is the relative thickness of the first component. The equation of continuity
for the planar case takes the form

+ —L =0. (2)

As the drawing involves two polymer films differing in thermophysical parameters and the

components are in contact, we get a system of two energy equations (with dissipative heating
neglected): :

oT, daT, 0T,
v I'x —T =q s
(vo + I'x) % !/ 3y 1 g2
3)
orT oT T (
v, + I'x LI i —g .
(v ) O Yy 3 2 P

The temperature distribution in the film is found by solving (3) subject to the follow-
ing boundary conditions:

x=0, Ty=1%(y), (4)
x=0, To=1v;:(y) (3)
y=p, — o4 4 a4 (Ty—Tc) =0, (6)
y = ﬁz, }"2 aTZ + o2 (Tz —_ T(;!) = O, (7)
dy
y= 50 Ti = TZ’ (8)
oT. aT
=B, A—t =n, 2 , (9
y ﬁc 1 ay A'2 ay

The functions y,(y) and y2(y) satisfy the Dirichlet conditions and also the conjugation
conditions of (8) and (9).

We make the substitutions
t’———-T’_T[‘, t2=T2—'T[2.

Fig. 1. Scheme for drawing of a bicomponent film.
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Then (3) takes the form

, oty 0t 0%t
vy —TI'x —T =aq —,
(v - ) o% ) 3y 1 3
(10)
2
(o + T) % _ Ty o, =a, Fty
0x dy dy?
The boundary conditions are correspondingly put as
=0, t =9y —Te, (11)
x=0, =9,y —T,, 12
ot
y=Bn —M—— +at;=0, (13)
y=p8, % % +ayl, =0, (14)
y=l3¢, h4+Te, =t + T, (15)
y=B M- (16)
dy dy :

System (10) is solved by separating the variables; let
=)0, &=/l )P an

System (10) takes the following form after separating the variables:

f1 Q1 1
Tll =g By 8 s,
(v + T'x) 2 2] @ Y o 1
(18)

@+l =0, 2 1y 2 s,

where S, and S, are eigenvalues; the solutions for the functions f;(x) and f;(x) take the
form
S,

S:
fil) = (v, +Tx) T, f2(¥) = (0 +Tx) T
We reduce (18) to a Weber equation [6] in order to define ¢,(y) and ¢a(y).
The solution to (18) is

ty=Ci(vy+-Tx) T [Fi (y» Sp) + Gy ]_//-7!‘ Fy(y, SO],
(19)

to = C,(vy + Tx)! [Fi(y, Ss) + Ciiy l/-;o_Fz (y 52)]’

where

—_——_—— o .. ’ I‘\ v F 2v
Fily, Sp =1+ @) (=D (‘/Tk y) :

- PRSI v —_ —— v
Fa(y, Sp) =1+ 2 & D - (“‘)V(l/ aka)z v

v=
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where k = 1 or 2 is the number of a component, and F; and F; are Pachhammer functions or de-
generate hypergeometric functions [6].

The unknowns C;-C, and the eigenvalues S; and S; are derived from (11)-(16).

From (13) we get Ca:

C, — — [oFy By, So) — AiF; (Bs, Syl
2

. T ./ T, , T ' (20)
t [—M ‘/E Fy(By, Sy) —'Ml/ E BsFs By, Sa)f’ltﬁil//-apz(ﬁh Sl)}
Siﬁilarly from (14) we have
— [2F (Bar Sz} — AF1(Bar So
Co= . = [y 1(Bzfsz) 'z 1 (B2 S))} — , (21)
! [M] - Fa(Bay So)+2y l/ @ BaF 2 (Bay So)— oy l ZFz(ﬁz' Sz)]
where
, oF, (B, S . oF, (Bx, Si)
. F (ﬁh» Sk) :M’ Fs (ﬁhv Sk) = —2—(&—’:’
Oy 9y
and k = 1, 2 are the numbers of the components. To derive C; we use (11):
CiZi(y, S)) =h1(y) —Te,, (22)

where
S,

s T
Zl (yv Si) = vor [Fl (y1 Si) - Cz’!/ ‘//

ay

F2 (y’ S!):l

This particular solution does not satisfy the initial condition, so we write the general
solution as an infinite sum of particular solutions:

E CiZin (s S1n) =W (@) —Tepe (23)
n=1

The system of functions Z,,(y, Sip) is complete and orthogonal; we multiply both sides
of (23) by Zyp(y, Sim)dy and take the integral with limits B, and B¢ [7]:

B.c @C
2 Ci 5 Zﬂn (y» Sln) Zlm (y’ Sim) dy = J [“pi (I/) - TC,] Z!m (y, Slm) dy’
n=1 B, B

The orthogonality implies that the integral on the left is zero for m # n, and there-
fore

Be
§ 160 6) — Tl Zun (9, i) dy
B«

Cl = B. (24)
§ Zia(g, Sw)dy
B4
Similarly we have from (12) that
B
j [¢2 (y) — T“:] Zzn (y’ SZn) dy
€= - (25)
Y Zgn (y, Sin) dy
Be
where
Sin [ o /T
Zzn (yr S’.’n) = UOF LFi (.l/v SZn.) “iT C,‘l_l/ l/ a, F’-’ (y’ SZn) .
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The eigenvalues S;p and Sgp are determined as the roots of a system of transcendental
equations derived from (15) and (16):

Sl’"

v oy L a1/ T
T‘x + Ci (vo ‘_ ] .\') r [Fi (ﬂcv Sln\' _T' Czlﬁc ‘l“/ E FZ (ﬁc’ Sln)] =

. LS v/ T
= sz - C3 (UO - 1)') r [Fl (ﬁc’ SZn) T Cblﬁc l ’ —(1—:1:2 (Bcs 8211)]’ (26)

rCoo i Sin—San , . ’-_I‘_ ,
_X—:,‘E:;(UOTF"‘) r {Fl (ﬁcv S!n)':‘CZL l// _a"; [FZ (6(:’ S‘,,)——:— ﬁcF2(Bcv Sin)]}=

. . ) T .
=Fi (B San) - Cid l/a—2 [Fs(Ber Sou) =+ BeF2 (Ber San)l-

The solution to (19) is put as a series in accordance with the above arguments:

o [ T
T1= Tc, Tz Cin {Uo+ FX) T LFi (yv Sin)_;"cmliy ]//-'a_‘ F2 (!/’ Sln)] ’
n=1 1 (27)
B S2n

L S
T2: Tc, '{'2 Can (UO+IX) T [Fi (y, SZn) - Cénly l// _a_ Fz (y, SZn):I .

n=1

The quantities C;p-Cun are defined by (24), (20), (25), and (21), while the eigenvalues are
derived from (26).

The method can be extended to the drawing of a multilayer film,

If the elastic parameters of the components are known as functions of temperature, one
can use (27) to optimize the production of crimped materials [8].

NOTATION

Vo, V§, initial and final velocities; 6o, initial thickness of bicomponent film; 6,, 62,
initial thicknesses of the first and second components; L, drawing zone length; B,, Ba,
ordinates of the surfaces of the components; B., ordinate of interface; T¢,, T¢,, tempera-
tures at surfaces of the components; T,, T, temperature distributions in the components;

a,, a2, thermal diffusivities; x, y, coordinates; y;(y), ¥a2(y), initial temperature distribu-
tions; A3, Az, thermal conductivities; «,, a2, heat-transfer coefficients for the outer sur-
faces; t,;, ta, excess temperatures.
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