
The values of the relative boundary-layer thickness, displacement thickness, momentum 
thickness, and local tangential stress on the plate in relation to ~ are given in Table 2. 

It should be noted that the obtained solutions include, as a special case of the con- 
sidered problem, the solution for the boundary layer of a Newtonian fluid. For this we must 
put s - O. 

NOTATION 

x, y, z, Cartesian coordinates; u, v, velocity vector components; w, microrotation 
vector component; u, ~, v2, coefficients of shear, rotational, and couple viscosity; B = 
u/p, dynamic coefficient of shear viscosity; 0, density; wo, microtation on plate; U=, 
velocity of incident flow; s - ul/~, m = Juz/~, dimensionless rheological parameters of 
fluid model; J, microinertia; A, B, u, constants~ T, stream function; ~, self-slmilar vari- 
able; f, ~, dimensionless stream and microrotation functions; txy , tyx, stress tensor com- 
ponents; mxy , myx, couple stress tensor components; To, local tangential stress on plate; 
6, relative boundary-layer thickness; 6", displacement thickness; g**, momentum thickness. 
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HEAT TRANSFER IN A STRETCHED BICOMPONENT FILM 

N. V. Tyabin, V. M. Shapovalov, and V. P. Remnev UDC 677.4;541.12.036 

The temperature distribution in a bicomponent film during nonisothermal stretch- 
ing is discussed without allowance for dissipative heating. 

Bicomponent films (laminates) are increasingly used, because such films are of particu- 
larly good performance, e.g., in the production of crimped materials, where the crimping 
arises from differences in elasticity of the components. A polymer characteristically has 
very marked temperature dependence of the elastic parameters, so the working temperature is 
a major parameter in production of crimped bicomponent material. Appropriate thermal con- 
ditions can be provided in pulling such films in order to control the crimping [i, 2]. 

Here we consider the temperature pattern in such a film during nonisothermal stretching. 

Figure 1 shows the drawing scheme. 

We use an ~mobile Euler coordinate system with the x axis coincident with the direction 
of motion of the film, while the y axis is perpendicular to that direction, and the origin 
and the x axis are equidistant from the outer surfaces of the film. 

We assume a linear distribution for the axial velocity of the film in the drawing zone 
[3-5]: 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 36, No. i, pp. 127-132, January, 
1979. Original article submitted November 22, 1977. 
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= v - - ' r x ,  (1 )  Ur 0 

where r = (vf - vo)/L is the mean velocity gradient. 

We use the integral equation of continuity to get the following equations for the sur- 
faces of the components: 

Pi = -- 8oVo , ~2 = 6or , 

2 (Vo + rx)  2 (Vo + I'x) 

~ c =  60 ( q - O ' 5 )  v o" , 
Vo + Fx 

where q = 6x/6o  is the relative thickness of the first component. 
for the planar case takes the form 

av ~ av ,j _ 

�9 + O. ( 2 )  
Ox Oy 

As the drawing involves two polymer films differing in thermophysical parameters and the 
components are in contact, we get a system of two energy equations {with dissipative heating 

OZTi (V 0q-Fx) OTI ry OTI = a t - -  
Ox Oy Oy 2 

(v o + rx) OTz ry OTz 02Tz 
OX Oy -- az - -  Oy 2 

neglected): 

The equation of continuity 

C3) 

The temperature distribution in the film is found by solving (3) subject to the follow- 
ing boundary condltions: 

V = ~z, 

x = 0 ,  T i = * l ( y ) ,  (4) 

x = 0, T2 = *2 (Y), (5 )  

OTt -- l i  -@ +=~I(T,--Tc,)=O, ( 6 )  

OT2 + ~ az (T2 - -  T~,) = 0, (7) 

Y=[~c, T i = T 2 ,  (8) 

Y = ~ ,  Zl OTt =12 OT2 (9) 
ov Oy 

The functions ~(y) and $2 (y) satisfy the Dirichlet conditions and also the conjugation 
conditions of (8) and (9). 

We make the substitutions 

t t = T i - - T q ,  t, = T_, - -  T~,. 

Yl ~0 

Fig. i. Scheme for drawing of a bicomponent film. 
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Then (3) t a k e s  t h e  f o r m  

at, at, 
(v o @ F x ) - - F y -  = a t - -  

ax ay 

(vo + rx) at, ry  a& = a ,  
ax Oy 

The b o u n d a r y  conditions are correspondingly p u t  a s  

x = O, tl = ~, (y) - -  Tq,  

x = O, t2 = ~;2 0t) - -  T,,, 

y ~,, ki at, , 

= - -  ", ~ l t i  : O, 
ou 

Y = ~2, k, Ot~ + ~ t2  = O, 
ou 

y = ~r tl + Tc, = t~ + T,. ,  

Y = ~c, ki at, = k2 Ot~. 
ay ay 

02tt 
ayz ' 

a2t. 

oy z 

(1o) 

(Ii) 

(12) 

(13) 

(14) 

(15)  

(16)  

System (i0) is solved by separating t h e  variables; lee 

t, = f ,  (~  ~,  (y), t~ = f~ (x) ~ ~) .  

S y s t e m  (i0) takes the following form after separating the variables: 

= s , ,  
q)[ (pl 

(Vo + rx) = a, T I  + ry ~ 

(Vo + rx) t~ q'; ~ = s,, 
W = a, + 

where S, and Sz are elgenvalues; the solutions for the functions fa(x) and f2(x) 
form 

S, S, 

[ i  (x) = (v o ~ Fx) r f2 (x) = (Vo + Fx) r 

We reduce (18) to a Weber equation [6] in order to define ~,(y) and ~(y). 

The solution to (18) is 

t i = C t ( v o + F x ) ' F -  Fi(g, SO-?C2iy  / F 2(y, SI) , 

t_. = C z (Vo + Fx) -F- F~ (g, S2) - -  C j y  ~ F2 (y, S2) , 

where 

F, (g, Sic) == 1 + 

F2(y, $1,) = I + 

F /  - -  F 

(2v)! 
%'= 1 

(2v-[- 1)! 

Ty  2v 

(1.7) 

(18) 

take the 

(19) 
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where k = 1 or 2 is the number of a component, and F, and Fa are Pachha-~er functions or de- 
generate hypergeometric functions [6]. 

The unknowns C,-C4 and the eigenvalues S, and S, are derived from (11)-(16). 

From (13) we get C2: 

- -  [~,F, (~,, S,) - -  ~,F[ (~,, S0I 
C 2 =  

Similarly from (14) we have 

C, - -  - -  [cz2F, (Pa, S2) ' t2F~ (/32, So_)l ( 2 1 )  
F # ' V "  ' 

where 

FI (~,, Sh)= OFt(lib' Sh) , F~_ (Ilk, Sk)= OF2(~" Sk) 
Oy Oy 

and k = i, 2 are t h e  numbers of the components. To derive C~ we use (ii): 

where 

CtZ, (y, S,) = r (y) --  To,, 

i i ] Zl(y ,  S t ) = v o  v Ft(y, SO+C2iy  / Fo(y, Sl) �9 
at  " 

(22) 

This particular solution does not satisfy the initial condition, so we write the general 
solution as an infinite sum of particular solutions: 

• CiZin  ~ ,  S i n )  .~- * l  (Y) - -  To,. ( 2 3 )  
n= I 

The system of functions Ztn(y, Sxn) is complete and orthogonal; we multiply both sides 
of (23) by Z,m(y , Sxm)dy and take the integral with limits 8, and 8c [7]: 

~'~ C, j~'CZ,n (!t, Sin) Z,m (y. Stm) dy = le'c[ *, (y) - -  T~,I Z,,. 0t, S,,.) dy, 

fore 
The orthogonality implies that the integral on the left is zero for m # n, and there- 

j [*~. (y) - -  T,-,] Z~,, (y, S,.) dy 
Ct - -  13, 

-- ~c 2 (24) 
Z~n ~, $I.) dy 

Similarly we have from (.12) that 

where 

j" [q'a (Y) - T.] Z2n (y, $2~) dy 
C3 = ~,. ( 2 5 )  

.[ Z~n (y, Sz.) dy 

z~,, (v, sz~) = v T F, (y, s~) .i- cdv | / / ~  F, (V, S~,,) . 
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The eigenvalues S~n and San are determined as the roots of a system of transcendental 
equations derived from (15) and (16)" 

s[ ] Tq _ Ci (vo -~ l'x)--U Fi (fJo S1,,) % C~.i~c -- F2 (~J~, St.) = 
ai 

Son [ | /t- O~ ] 
---- Tr ' C~ (v o -- Fx)T-  .F, (~c, Sz,,) ~- C,i~ I, Fa (~r S~.,0 , (26) I 

(Vo-' r x ) ~  FI (~, S,,,)_ C2i IF2 (~c. S,,,)+ ~=Fs S,.)] = 
~2C3 ' I /  al 

/ / r  ' oF; = FI (~, S~,,) -:. C,i ~ [F2 ([~, $2,~) -:- 

The solution to (19) is put as a series in accordance with the above arguments: 

s'"r /- r 1 T , = T ~ , + ~  C, .~vo+Fx)  r [F,(y,  S,,,)6-C2,~ig Ij -~l F2(tJ, S,,,) , 

T2= To, q C3,, (vo--Fx) --f- Ft (y, $2~) -~ C4~iy /" ' F._, ( y ,  S 2 ~ )  . 
n = !  

(27) 

The quantities C~n-C4n are defined by (24), (20), (25), and (21), while the eigenvalues are 
derived from (26). 

The method can be extended to the drawing of a multilayer film. 

If the elastic parameters of the components are known as functions of temperature, one 
can use (27) to optimize the production of crimped materials [8]. 

NOTATION 

vo, vf, initial and final velocities; 6o, initial thickness of bicomponent film; 61, 62, 
initial thicknesses of the first and second components; L, drawing zone length; BI, B2, 
ordinates of the surfaces of the components; Bc, ordinate of interface; Tcx, Tc2 , tempera- 
tures at surfaces of the components; T~, Ta, temperature distributions in the components; 
al, a2, thermal diffusivities; x, y, coordinates; ~(y), ~2(Y), initial temperature distribu- 
tions; l~, I~, thermal conductivities; uz, a2, heat-transfer coefficients for the outer sur- 
faces; t~, ta, excess temperatures. 
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